The kernel function and its hyperparameters are the central model selection choice in a Gaussian proces (Rasmussen and Williams, 2006). Typically, the hyperparameters of the kernel are chosen by maximising the marginal likelihood, an approach known as Type-II maximum likelihood (ML-II). However, ML-II does not account for hyperparameter uncertainty, and it is well-known that this can lead to severely biased estimates and an underestimation of predictive uncertainty. While there are several works which employ a fully Bayesian characterisation of GPs, relatively few propose such approaches for the sparse GPs paradigm. In this work we propose an algorithm for sparse Gaussian process regression which leverages MCMC to sample from the hyperparameter posterior within the variational inducing point framework of Titsias (2009). This work is closely related to Hensman et al. (2015b) but side-steps the need to sample the inducing points, thereby significantly improving sampling efficiency in the Gaussian likelihood case. We compare this scheme against natural baselines in literature along with stochastic variational GPs (SVGPs) along with an extensive computational analysis.
translated by 谷歌翻译
随着物联网(IoT),边缘计算和云计算的普及,正在开发越来越多的流分析应用程序,包括在物联网传感数据之上的实时趋势预测和对象检测。一种流行的流分析类型是基于重复的神经网络(RNN)基于深度学习模型的时间序列或序列数据预测和预测。与假设数据提前可用并且不会更改的传统分析不同,流分析涉及正在连续生成的数据,并且数据趋势/分布可能会发生变化(又称概念漂移),这将导致预测/预测准确性下降时间。另一个挑战是为流分析找到最佳的资源提供,以达到良好的总体延迟。在本文中,我们研究了如何使用称为长期记忆(LSTM)的RNN模型来最佳利用边缘和云资源,以获得更好的准确性和流式分析。我们为混合流分析提出了一个新颖的边缘云集成框架,该框架支持云上边缘和高容量训练的低潜伏期推断。为了实现灵活的部署,我们研究了部署混合学习框架的不同方法,包括以边缘为中心,以云为中心和边缘云集成。此外,我们的混合学习框架可以根据历史数据进行预训练的LSTM模型,并根据最新数据定期重新训练LSTM模型的推理结果。使用现实世界和模拟流数据集,我们的实验表明,在延迟方面,提出的Edge-Cloud部署是所有三种部署类型中最好的。为了准确性,实验表明我们的动态学习方法在所有三种概念漂移方案的所有学习方法中都表现出最好的作用。
translated by 谷歌翻译
内核选择在确定高斯过程(GP)模型中的性能方面发挥着核心作用,因为所选择的内核在之前的GP下确定了电感偏差和在GP下的功能的先前支持。这项工作解决了为高维GP回归模型构建自定义内核功能的挑战。从最近的深度学习进步中汲取灵感,我们介绍了一个名为Kitt的新方法:通过变压器识别内核识别。 KITT利用基于变压器的架构,以在0.1秒内生成内核建议,这比传统的内核搜索算法快几个数量级。我们使用从已知内核的词汇表中从前线生成的合成数据训练我们的模型。通过利用自我关注机制的性质,KITT能够处理具有任意尺寸的输入的数据集。我们证明,KITT选择的内核会在各种回归基准集合中产生强烈的表现。
translated by 谷歌翻译
高斯工艺(GPS)模型是具有由内核功能控制的电感偏差的功能丰富的分布。通过使用边际似然作为目标优化内核超参数来实现学习。这种称为II类型最大似然(ML-II)的经典方法产生了高参数的点估计,并继续成为培训GPS的默认方法。然而,这种方法在低估预测不确定性并且易于在有许多近似数目时易于过度拟合。此外,基于梯度的优化使ML-II点估计高度易受局部最小值的存在。这项工作提出了一种替代的学习过程,其中核心函数的超参数使用嵌套采样(NS)被边缘化,这是一种非常适合于复杂的多模态分布来采样的技术。我们专注于具有频谱混合物(SM)粒子的回归任务,并发现定量模型不确定性的原则方法导致在一系列合成和基准数据集中的预测性能中的大量收益。在这种情况下,还发现嵌套的抽样在汉密尔顿蒙特卡罗(HMC)上提供了速度优势,广泛认为是基于MCMC推断的金标准。
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译
This paper proposes a novel observer-based controller for Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV) designed to directly receive measurements from a Vision-Aided Inertial Navigation System (VA-INS) and produce the required thrust and rotational torque inputs. The VA-INS is composed of a vision unit (monocular or stereo camera) and a typical low-cost 6-axis Inertial Measurement Unit (IMU) equipped with an accelerometer and a gyroscope. A major benefit of this approach is its applicability for environments where the Global Positioning System (GPS) is inaccessible. The proposed VTOL-UAV observer utilizes IMU and feature measurements to accurately estimate attitude (orientation), gyroscope bias, position, and linear velocity. Ability to use VA-INS measurements directly makes the proposed observer design more computationally efficient as it obviates the need for attitude and position reconstruction. Once the motion components are estimated, the observer-based controller is used to control the VTOL-UAV attitude, angular velocity, position, and linear velocity guiding the vehicle along the desired trajectory in six degrees of freedom (6 DoF). The closed-loop estimation and the control errors of the observer-based controller are proven to be exponentially stable starting from almost any initial condition. To achieve global and unique VTOL-UAV representation in 6 DoF, the proposed approach is posed on the Lie Group and the design in unit-quaternion is presented. Although the proposed approach is described in a continuous form, the discrete version is provided and tested. Keywords: Vision-aided inertial navigation system, unmanned aerial vehicle, vertical take-off and landing, stochastic, noise, Robotics, control systems, air mobility, observer-based controller algorithm, landmark measurement, exponential stability.
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
Increasing popularity of deep-learning-powered applications raises the issue of vulnerability of neural networks to adversarial attacks. In other words, hardly perceptible changes in input data lead to the output error in neural network hindering their utilization in applications that involve decisions with security risks. A number of previous works have already thoroughly evaluated the most commonly used configuration - Convolutional Neural Networks (CNNs) against different types of adversarial attacks. Moreover, recent works demonstrated transferability of the some adversarial examples across different neural network models. This paper studied robustness of the new emerging models such as SpinalNet-based neural networks and Compact Convolutional Transformers (CCT) on image classification problem of CIFAR-10 dataset. Each architecture was tested against four White-box attacks and three Black-box attacks. Unlike VGG and SpinalNet models, attention-based CCT configuration demonstrated large span between strong robustness and vulnerability to adversarial examples. Eventually, the study of transferability between VGG, VGG-inspired SpinalNet and pretrained CCT 7/3x1 models was conducted. It was shown that despite high effectiveness of the attack on the certain individual model, this does not guarantee the transferability to other models.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.
translated by 谷歌翻译